
A Compiler for the Tcl Language

Adam Sah and Jon Blow

Computer Science Division

Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720

(asah@cs.Berkeley.EDU, blojo@xcf.Berkeley.EDU)

May 24, 1993

Abstract

Tcl is a highly dynamic language that is especially chal-

lenging to execute e�ciently. The dual-language nature

of the system enforced by the C callback mechanism

makes traditional compilation and optimization unre-

alistic. In addition, the lack of formal data types (and

therefore type checking) places severe limits on the abil-

ity to provide for e�cient data storage at compile time.

In this paper, we discuss the many issues involved with

compiling Tcl, and present a design for such a system,

including the mechanism for embedding a Tcl script

into the compiler itself in order to provide user exten-

sibility. The current implementation is presented along

with results showing approximately ten times the per-

formance of the existing Tcl interpreter.

1 Introduction

1.1 Overview of the Tcl Language

Tcl[Ous93] is designed to address the need for a \script-

ing" language, providing high-level control over a pro-

gram. The interface between Tcl and the running pro-

gram consists of the Tcl runtime library, which is em-

bedded into the C application code.

Tcl appears to the programmer as a syntactically

simple combination of Lisp [Wil86], Perl [WS90] and

the Unix Shell language [Bou78]. Like the Unix Shell, it

supports nested commands, automatic concatenation,

and newline-command-termination. From Lisp, it bor-

rows `defun'-like syntax, default procedure arguments,

and eval(). Like Perl, Tcl's only data type is the string.

In Tcl, every statement can be thought of as a func-

tion call, in the form of \cmd arg arg arg", where the

`cmd' pseudo-function is the �rst whitespace-separated

argument and the args are the various whitespace-

separated items that follow it. Square-brackets denote

nested commands; dollar-signs indicate variable substi-

tution; curly-braces serve to group text into a single

argument, without performing substitution.

An example follows:

comments start with a '#' character.

sets variable a to value "5"

(the string, not the number!)

set a 5

sets b to the string "10".

The 'expr' command converts the string

"5" to the number 5, (it is not

performed by the interpeter)

set b [expr $a+5]

sets c to "5.510"

set c $a.$a$b

outputs the string "5".

puts stdout $a

define a new function

note default argument of '1'.

'proc' is a command taking "fact",

"{n 1}" and "if ... " as arguments

(curlies are stripped by the interpreter).

proc fact { {n 1} } {

if {$n <= 1} {

return 1;

} else {

return [expr $n*[fact [expr $n-1]]];

}

}

"foo" is called with args "bar", "7"

foo bar 7

One of the most interesting features of Tcl is its abil-

ity to be embedded and extended through its C lan-

guage library. From the C programmer's perspective,

the Tcl interpreter is treated as an instantiable object

(embedded), which is passed the contents of the script

1

to be run. This object exists as a data structure in

C working in tandem with a C function library. The

Tcl runtime library exposes all of the core commands

to the C programmer directly, so Tcl statements may

be executed as C function calls to routines provided by

the library. This library is identical to the one that Tcl

uses to evaluate statements in a script. Thus, programs

like wish are nothing more than main loops which col-

lect user input and pass it one statement at a time to

a routine called Tcl Eval().

Tcl can also be extended from the C program by reg-

istering commands with the Tcl interpreter. The inter-

preter will call back to your C code when and if that Tcl

command is executed. In fact, this is how all of the core

language commands are implemented. In the above ex-

ample, the set command is nothing more than a reg-

istered callback whose function pointer is the library

function which handles set - the very same one which is

available to the C language programmer directly! The

last statement in the example, \foo" doesn't exist in

the default Tcl language - it is either a call to a proce-

dure de�ned in Tcl itself using the proc mechanism, or

a callback to a C function de�ned by the user, where

the arguments \bar" and \7" are passed to it, in their

string forms.

1.2 Why Do We Need to Compile It?

Most Tcl scripts and commands are designed to oper-

ate over high level, expensive constructs, where speed is

not the primary consideration. In these cases, the cost

of the interpretation is negligible compared to the over-

head within individual callback functions. For exam-

ple, on a Sun Sparc2, the set command takes under 75

microseconds. By comparison, creating a new window

in X Windows can take a human-noticeable amount

of time, even on faster workstations. Using Tcl as a

heavyweight integration tool generally does not impact

application performance. Even in cases where it does,

performance bottlenecks in Tcl can easily be isolated

and rewritten in C, in the form of callbacks.

However, this recoding is annoying and inbihits the

con�gurability that Tcl o�ers; it can also remove some

of the modularity of a well-written Tcl-based program.

For example, if you discover that a loop written in Tcl

is a performance bottleneck, it would be rewritten in

C, and a new command registered with the Tcl inter-

preter. Once this has been done, any commands in the

loop are now hard-coded relative to the high degree of

con�gurability that Tcl o�ers.

1.3 Summary

In the remainder of the paper, we discuss the design and

implementation of the compiler in depth. Section 2 de-

scribes the compiler interface, an overview of the user's

view of the compilation system. Section 3 discusses the

high-level design decisions involved with the e�cient

execution of Tcl. In Sections 4 and 5, the given imple-

mentation is presented, �rst in terms of the compiler,

and then in terms of the runtime. Section 6 presents the

results of this implementation through a series of small

benchmarks, and Section 7 summarizes our e�orts and

proposes future work.

2 The Compiler Interface

2.1 Previous Work

2.1.1 Emacs Lisp

Emacs is a programmable editor whose underlying lan-

guage is a variant of MockLisp called Emacs Lisp[Sta86]

(or elisp for short). Included in this system is a \byte-

compiler" which preparses the code to a binary format.

All of the elisp source �les are stored in a single direc-

tory, with names ending in \.el". Byte-compilation of

a source �le is output to the same �lename with the

extension \.elc". When this source �le would otherwise

be loaded, the system automatically looks for a com-

piled version of it and will load that in the place of an

original source �le.

The byte-compiler's output is highly portable. This

means that compiled elisp �les can be placed on servers,

side by side with the original source code, instead of

requiring a separate set for each architecture.

2.1.2 Perl

Perl[WS90] is a scripting language with many charac-

teristics of Tcl: it is designed for high-level control over

arbitrary input, its syntax is designed around the string

data type, and its support for data types is nearly

identical- associative arrays, scalar variables, and ar-

rays of scalars (which are similar to Tcl lists).

Perl lacks embeddability, and so fails to a large de-

gree to serve as a high-level control language. Note,

however, that Perl does support arbitrary inter-process

communication (IPC), so applications which can talk

in this way can interface with Perl using this facility.

Perl is compiled on demand each time the script is

loaded.

2.2 The User Interface

The Tcl Compiler (TC) operates much like the elisp

byte compiler: it produces binary �les which the run-

time system knows to look for, and if found, will use in

the place of the raw source when executing. This run-

time is essentially a replacement Tcl interpreter, which

takes as input binary data from a �le, instead of textual

data. Like elisp, TC's output �les are portable, and so

can be placed on servers.

The reason we chose this model is that Tcl cannot be

compiled into pure machine code without the support

2

of a large runtime library. This is due to the user-

extensibility system, where builtin commands can be

overloaded, removed, added, etc. Even simple state-

ments may have completely di�erent behaviors depen-

dent on some portion of code that the compiler does

not have access to. This property is described in fur-

ther detail below.

One alternative would have been to follow Perl's

model, where the source code is read at runtime and

compiled on-the-y before each execution. However,

Tcl has a high parsing cost, so it is desireable to

preparse source code prior to execution. Additionally,

Tcl is used for large applications, some of which are

10,000 lines long. These programs must be compiled

prior to execution.

3 Di�culties with Compiling

3.1 Some Terms

To simplify this paper, some terms are explicitly de-

�ned. A \statement" refers to an individual line of

Tcl code, including all arguments. The �rst argument

is called the \command"; all subsequent whitespace-

separated arguments are called \arguments" or \args".

If a commandwas not de�ned by proc, but exists in the

interpreter (eg. it is a registered C callback function),

it is called a \builtin". Note that the entire Tcl core

command set is implemented as builtins.

3.2 Overview

It is tempting to naively design a traditional compiler

for Tcl, which outputs pure executable code. However,

there are numerous problems with this. First, Tcl is

highly dynamic in nature. Commands (functions in

the C model) can be called by their string names or

rebound at any point through the rename command.

Similarly, variables can be unset, commands may not

exist (and hence trigger unknown to be called), traces

can be placed on all data objects, and so on. To im-

plement all of these features would require both a large

runtime library and enormous overhead in each usage,

not dissimilar from the same overhead that the existing

interpreter incurs.

Second, it is unclear how to e�ciently store data for

Tcl. Since there are no types in the language, there

is no obvious data layout method one can use besides

strings. Again, this is what the current interpreter does.

Lastly, Tcl uses C callbacks (\builtins") as �rst-class

functions, where the callbacks have direct access to the

interpreter state. Callback functions are free to make

changes to, or depend on, the state of the virtual ma-

chine; these are called \side e�ects" in compiler par-

lance. The di�culty with these side e�ects in the Tcl/C

model is that they are impossible to predict. Without

this knowledge, the compiler cannot be sure that any

given statement won't cause a rename, unset or some

other state change in the virtual machine.

3.3 Preparsing

A more humble approach is needed. In this vein, one

can start by noting that Tcl's \cmd arg arg arg" style

statements lend themselves to preparsing. This is be-

cause it is always possible to determine the arguments

to a given command. At the very least, the compiler can

break up the statement into string arguments, which

will save some amount of parsing e�ort normally ex-

pended at runtime. Preparsing is very valuable in Tcl;

a typical Tcl script spends most of its non-work-related

execution time scanning and parsing statements.

However, preparsing statements into arg lists is not a

panacea. Many important commands take arguments

containing large amounts of data. For example, if,

while, proc, for, and other commands all take \com-

mand lists" in one or more arguments. These cmdlists

are often hundreds of bytes long; they e�ectively can

contain entire scripts within them. Clearly, one would

like to parse these internally as well. By the same token,

we would like to also preparse the boolean expressions

associated with for, if, and while, and the list struc-

tures used by lindex and the other list commands, and

so on. In the following example, if arguments weren't

individually parsed, the body of this for loop would re-

main in string form, and would require runtime parsing,

and thus the compiler would provide little performance

improvement.

for {set i 0} {$i<1000} {incr i} {

<many lines of code>

}

To accomplish this, a typing system for Tcl is needed,

where one doesn't exist. Normally, the types are co-

erced from string data at runtime, on a per-command

basis. It is happenstance that the list format is uni-

versal among list commands, for example. Thus, some

way is needed to inform the compiler as to the argument

types each command expects. Then, if a static string

is found at compile-time, we can preparse this to be of

that type. For example, since almost all cmdlists are

surrounded by curly braces in Tcl source code, the con-

tents are static (no substitution will occur prior to the

argument being passed to the command). These can

then be parsed at compile-time, and treated as a list of

commands. In the case where variable substitution is

allowed, such preparsing cannot happen, since the ar-

gument value depends on a variable's value, which is

unknown at compile-time.

3.4 Solving the Side E�ects Problem

While it seems that user-de�ned C callbacks present an

intractable optimization problem, it actually is possible

3

to guess the state of the virtual machine from the Tcl

source code. In Tcl, user-de�ned callbacks are required

to use a set of C library routines to access the Tcl in-

ternals (ie. variable values). Our system adds hooks

to this core Tcl library, which will call out to TC rou-

tines when triggered. This allows the TC runtime to

maintain more e�cient structures, and keep them up-

dated if they change unexpectedly. For example, the

TC runtime maintains a table of commands, which is

directly indexed, in order to save on the hashing costs

normally associated with Tcl variable access. When a

C callback function attempts to rename a command,

this is trapped and the table entry is updated.

However, this mechanism is still insu�cient to allow

for more aggressive optimizations, since you cannot de-

termine what the dependencies are until they are trig-

gered. Thus, it is impossible to implement optimiza-

tions that involve code motion, elimination of unused

variable assignments, and so on.

4 The TC Implementation

4.1 Preparsing- Expression Forest

The Tcl compiler uses a preparsing method, as de-

scribed above, to output a tree-like structuring of ex-

pressions and commands. At the roots are the indi-

vidual top level script statements, which include only

those commands not nested in cmdlists within control

structures. For example, all commands found within

the arglists for commands like proc, if, etc. cannot be

roots of the tree, although the proc, etc. commands

can be, if they themselves are not nested.

The node types for this tree include notations for

nested commands ([...]), concatenated expres-

sions (ie. ab), etc. An example follows:

Source Code

this is a comment

set a 5

concatenate the returns of the two nested

commands and pass it as an arg to foo.

foo [bar set][foo {5}]

Expression Dictionary (Parse Tree)

1. cmd \set"

2. constant \a"

3. constant \5"

4. cmd \foo"

5. cmd \bar"

6. constant \set"

7. nested statement [2 args][#5][#6]

8. nested statement [2 args][#4][#3]

9. concat [2 args][#7][#8]

Top Level Command List (Tree Roots)

[3 args][#1][#2][#3][2 args][#4][#9]

Notes: \#n" refers to a reference to item number

n. The compiler detects multiple uses of the same con-

stants and other primitive objects, and reuses these en-

tries. For example, the entry for the foo command

(#4) is reused. This system is also able to recognize

the di�erence between commands and static strings,

where the command name is the �rst argument. It

also strips the curly braces from the static string in the

third line of code. The concatenation and nested com-

mands were discovered at compile time. Lastly, com-

ments have been stripped.

4.2 Argument Parsing

As described previously, it is necessary to preparse ar-

guments in order to achieve real performance gains. To

support this, we introduce a type system into Tcl for

parsing compile-time constants, and a system for deter-

mining which builtin commands expect which types for

each argument.

Consider the `incr' command. In its �rst argument, it

expects to be passed the name of a variable. In its sec-

ond argument it (optionally) expects an integer value

(a string which can be parsed as an integer). Thus, if

the input contains the statement

incr a 5

we can know to treat \a" as the variable whose name

is \a", not the string \a". Likewise, \5" here is the inte-

ger value 5. Note that if the \5" were replaced by \$b"

for example, then we couldn't assume anything, except

that the value of b might be a string which has an in-

teger representation. Even this is not necessarily true,

since Tcl supports exception handling, so this blunder

may be intentional! The handling of these more dif-

�cult cases is discussed below in the runtime system,

since these are dynamic e�ects that are orthognal to

the problems encountered by the compiler.

It would be entirely possible to hardcode the compiler

to recognize these types and the commands which use

them. However, Tcl is extendable. This means that

a user could potentially author his or her own builtin

which takes as an argument a list or some other large

structure, which we would like preparse. Thus, it makes

more sense to allow the compiler itself to be extensible,

so such power users can compile their own commands

and arguments.

For this job, Tcl itself is ideal, and hence we embed

an interpreter into the compiler. This interpreter reads

in a con�g script at startup which declares data type

support and associates them to builtin commands. The

Tcl script contains the following two commands, in ad-

dition to the Tcl core. The backslahes indicate that the

arguments should be part of a single command.

4

type <name> <parseproc> <codegenproc> \

<loadproc> <printproc>

This declares a new argument type, which will use

parseproc to convert string data into parsed data of

this type, codegenproc to output into binary form,

loadproc to load at runtime, and printproc to con-

verted back into string form for output. These procs

are just names, which are associated statically by the

C callbacks to real C function pointers taking speci�c

arguments, using the Tcl hashing mechanism provided

by the Tcl core library (Tcl HashXxxx).

builtin <name> <parseproc> <codegenproc> \

<loadproc> <execproc> {

{ <type1> <argname1> }

{ <type2> <argname2> <default2> }

...

} <return_type>

This declares a new command to be compiled spe-

cially, named <name>, with procs de�ned for its compi-

lation and evaluation. Note that all but the execproc

may be left empty (passed fg , which evaluates to the

null string) because virtually all commands follow a

standard style employing known types for each argu-

ment. When left empty, TC substitutes a default rou-

tine to process the builtin.

For each list element in the body of the builtin decla-

ration, we specify what argument type should be passed

to this command. A name is required for identi�cation,

debugging, and bookkeeping purposes. The optional

third element is a default string for that argument. For

example, the `incr' command is described as follows:

builtin incr {} {} {} exec_incr {

{ variable var }

{ integer i 1 }

} integer

The \1" is preparsed as type integer and entered into

the dictionary. If incr is called with only one argument,

the runtime will substitute this default value for the

second argument.

5 Runtime Issues

As described previously, the TC runtime consists of

an interpreter capable of reading in byte encoded Tcl

scripts, preparsed as above. In order to support possi-

ble state changes such as command renaming, the Tcl

core library is modi�ed to update the state of the byte-

code interpreter when these changes occur.

It is now appropriate to discuss the actual execu-

tion of commands in this new environment. In order

to take advantage of the preparsing the compiler has

done, we need a new callback interface. This is because

the standard argc/argv interface defeats the purpose of

preparsing by taking string as arguments.

This implies the need to modify the C callback rou-

tines for any commands which are to be compiled. This

requirement is entirely reasonable. First, the new in-

terface is very easy to construct from the argc/argv one

for a given command. Second, the argc/argv interface

is extremely slow due to its use of runtime parsing, and

would require modi�cation in any higher-performance

system. Lastly, not builtins need to be compiled. Only

those which are frequently called or which are passes

large amounts of data impact the performance of the

�nal application.

This model needs to be extended in order to minimize

the parsing done at runtime, which still happens for

non-static strings. First, we modify the data return

system from using only strings (Tcl AppendResult())

to using this parsed form of a typed data pointer when

the new style of compiled callbacks are in use. This

is needed so that the results of one command can be

passed directly to another without reparsing the data

return. An example follows:

incr a [expr 4+5]

Assuming that both incr and expr are being com-

piled, we would like the return from expr to be the

value 9, not the string \9". This could then be di-

rectly sent into incr without reparsing. The only way

to avoid such reparsing is if expr doesn't convert its

result into string format. Hence the need for this new

style of return.

We also need to change the way that variables are

stored in the Tcl interpreter. If we take the above ex-

ample and modify it to read

set b [expr 4+5]

incr a $b

it becomes clear that if we disallow the value of \b"

to be stored in parsed form, we cannot avoid reparsing

it before its usage in incr. Thus, TC \dual-ports"

its variables, storing both a string pointer as well as a

compiled data value (the \typed data �eld"). Now, if

expr returns an integer, then \b" will store it in the

typed data �eld, and invalidate the string �eld. incr

can then be called directly with this parsed value. If \b"

were of some other type, it would need to be converted

to a string �rst, then back to an integer, as Tcl currently

does implicitly.

If this seems overly complex, recall that Tcl is a type-

less language. Lists, boolean expressions, integers and

so on are not distinguished by Tcl until individual com-

mands throw exceptions based on bad data. The fol-

lowing code with execute without error:

proc cdr {list} {

return [lrange $list 1 end]

}

set i 2; set j 3; set k "3 4"

linsert "$j $k" [cdr {1 2}] ij

5

The output of this command is \3 3 23 4". During

the course of execution we have implicitly converted

from string to integers, strings to lists, lists to integers,

and integers to strings. While this is clearly not an

example of good coding practice, it is legal Tcl input,

and in many cases similar usages may appear in real

source code. It is imperative that the TC runtime be

able to perform these operations smoothly.

The \dual-port" implementation provides su�cient

machinery to coerce data into parsed form, and keep

it there as long as possible. The rule for statements

is now simple: for each argument, convert the given

data to the proper type, then call the compiled callback

interface once the arguments are assembled. The rules

for conversion amount to treating the two data �elds

as caches to the value. If the data is required in a

speci�c type, and does not currently exist in that form,

it is converted. If the destination type is a string, its

value is stored in the string �eld; otherwise, the value

is stored in the typed data �eld. The writing of a �eld

is treated as follows:

Currently

Valid Writer Action

string only string string form updated.

typed only string string form updated,

typed form invalidated.

both string string form updated,

typed form invalidated.

typed only typed typed form updated.

string only typed typed form updated,

string form invalidated.

both typed typed form updated,

string form invalidated.

An example is provided:

set a 2

set b [expr 4*$a]

incr b

puts stdout ba

When a is initially set to \2", its value becomes the

string \2", rather than the integer value 2. This is

because we cannot assume its usage as an integer later

(and data lossage might result if we guessed wrong).

Its usage in the expr call is without curly-braces, so

again we cannot make assumptions about the compile-

time parsing of \4*$a" (consider what happens if a is

reset to the string \4+5"). As grim as this seems, b

still receives the integer value \8", because the call to

expr returned the numeric value 8. Hence the call to

incr requires no parsing. In the puts call of the last

statement, b requires conversion to string form, but a

does not.

To see the real bene�ts of this system, a more realistic

example is presented, where we sum the �rst thousand

integers (the hard way):

set sum 0

for {set counter 0} {$counter<1000} {

incr counter} {

incr sum $counter

}

In the standard Tcl interpreter, this requires 6000

calls to hash the strings \counter", \sum" and \incr";

the value of \counter" is parsed 3000 times and the

value of \sum" 1000 times; and the comparison string

is parsed 1000 times. In TC, no hashing occurs (it hap-

pens at load time), the values are parsed precisely once

(during the �rst iteration, when it converted the values

to integers), and the comparison string was preparsed,

so no e�ort was required at runtime.

6 Results

The above example involving summing the �rst 1000

integers required 630 milliseconds on a DecStation 3100

using wish. Using TC, it required only 57 milliseconds

for speedup of 11 times. Some more examples follow

which illustrate the relative strengths and weaknesses of

TC. Note that in no case is TC slower than the original

Tcl interpreter.

Test 1: Simple variable access and the incr com-

mand. This is espeically fast under TC, because only

the �rst iteration needs to parse the value of counter.

The time command is used to perform iteration be-

cause a for loop would interact with the timing data.

Note that the times are per iteration in this case.

set counter 0

puts stdout [

time {incr counter} 50000

]

Performance- �sec per iter.

Uncompiled Tcl: 219 �sec

Compiled Tcl: 18 �sec

Speedup: 12.17x

Test 2: Empty loop. The limiting factor of loops

are the boolean expressions, which are less e�cient to

evaluate than simple variable accesses, as compared to

uncompiled Tcl.

for {set counter 0} {

$counter<10000} {

incr counter} {

}

Performance- msec total

Uncompiled Tcl: 3,670 msec

Compiled Tcl: 425 msec

Speedup: 8.64x

6

Test 3: Nested loops. This shows a more realistic

example of the relative speedups of loops.

for {set count1 0} {

$count1<1000} {incr count1} {

for {set count2 0} {

$count2<1000} {incr count2} {

}

}

Performance- msec total

Uncompiled Tcl: 14,090 msec

Compiled Tcl: 1,649 msec

Speedup: 8.54x

Test 4: Pessimistic case- we can do nothing but break

the inner command into arguments and pass to the nor-

mal evaluation mechanism, because the command is not

known at compile time.

set oper incr

set count 0

puts stdout [time {

$oper count 2} 10000

]

Performance- �sec per iter.

Uncompiled Tcl: 244 �sec

Compiled Tcl: 188 �sec

Speedup: 1.30x

7 Conclusions and Future Work

When this project was started, it was unclear that com-

piling Tcl was even feasible, much less useful. The per-

formance metrics taken clearly show that it is feasible.

The latter will be determined as this project nears re-

lease and users begin compiling real Tcl scripts. How-

ever, the results are auspicious: ten-fold performance

improvements are almost always useful.

The existing system is far from complete. There are

many types and many commands which have not been

implemented, and are currently being left in string form

by the compiler and runtime system. Internally, the

software has been kludged in several places in order to

provide fast proof-of-concept, at the expense of long-

time viability, which will have to be replaced in the

near future. Lastly, there are the usual array of bugs,

which must be eradicated before any attempt is made

at production usage.

On the wish list, we include the ability to support

direct-conversion functions. This is needed in the case

of a arg-type mismatch of two similar types, where one

would want implicit conversion (ie. int to oat). This

has the potential to provide great performance gains in

these cases, as compared to the current system which

converts to a string and then into the detsination type.

Second, few of the data types are implemented. Of

these, the most important are lists. Some preliminary

tests indicate possible gains of 1-2 orders of magnitude

over the existing system of storing lists as strings.

Lastly, we propose make the replacement callback

style (structure pointers instead of string pointers) be-

come the standard for Tcl for some future version. In

this system, callbacks which want strings would need to

ask for them as a real data type. This has the poten-

tial to channel the performance improvements back to

users employing the command line, since such a system

would not need to rely on the compiler.

We would like to thank the following people for

their advice, contributions and other assistance: John

Ousterhout, Sue Graham, Raph Levien, Brian Dennis,

and the members of the Tcl/Tk Users Group. Ashok

Singhal, Colas Nahaboo, and Wayne Throop provided

a multi-language test suite.

References

[Bou78] S.R. Bourne. The Unix shell. The Bell System

Technical Journal, July-August 1978.

[Ous93] John Ousterhout. An Introduction to Tcl and

Tk. Addison-Wesley Publishing, 1993.

[Sta86] Richard Stallman. The Emacs Lisp Reference

Manual. The Free Software Foundation, 1986.

[Wil86] Robert Wilensky. LispCraft. W.W.Norton,

1986.

[WS90] Larry Wall and Randal L. Schwartz. Program-

ming Perl. O'Reilly and Associates, 1990.

7

