
Issue #2:

Evaluating Untrusted Scripts

John Ousterhout

Computer Science Division
Department of EECS

University of California at Berkeley

Security, slide 2

Introduction

Goal: use Tcl scripts as a general-purpose method of
interchange:

• Among applications on a display.

• Active e-mail messages (e.g. surveys).

Security problems:

• Tcl is powerful (can access files, etc.).

• Evil scripts can potentially do great harm.

Solution:

• Twin interpreters (like user-space/system-space).

• Protected calls between them (like system calls).

Security, slide 3

Twin Interpreters

Trusted

Untrusted

• Trusted interpreter: used by receiving application/user:
has access to all Tcl commands.

• Untrusted interpreter: used for incoming (suspicious)
scripts: all dangerous commands removed.

• New commands in trusted interpreter:

set evil [safetcl create]

$evil eval $script

• Untrusted interpreter won’t be able to do much that’s
useful, though.

Security, slide 4

Safe Calls

Allow trusted interpreter to implement restricted
new functions for untrusted interpreter:

• Restricted file access, sending mail, ...

• Analogous to system calls.

Mechanism: command in untrusted intepreter that
causes execution of command in trusted interpreter:

• In trusted interpreter:
set evil [safetcl create]
$evil safecall sendmsg checksend

• In untrusted interpreter:
sendmsg $to $body

• Substitutions occur in untrusted interpreter.

• Checksend executed in trusted interpreter with
fully-substituted arguments.

• Result/error returned to untrusted interpreter.

Security, slide 5

Safe Calls, cont’d

Procedures that implement safe calls must be very
careful:

• Never evaluate argument as Tcl script or Tcl
expression.

• Check file names before reading or writing files.

• Never execute shell commands specified in
arguments without careful checks first.

• When in doubt, ask user for permission.

Result: safe calls hard to write and certify.

But, for maximum power want lots of safe calls.

Need mechanism for certifying and distributing safe
calls.

Security, slide 6

Certifying Safe Calls

Use encryption techniques (digital signatures):

• Central, trusted, network authority writes new safe
calls, certifies them with digital signature,
distributes publically.

• Anyone can fetch certified safe calls, check
signature, install locally without fear.

• Active e-mail message (untrusted) can contain new
safe calls as part of the untrusted script.

• Untrusted script invokes existing safe call to make
new safe call.

• In trusted interpreter, verify signature of incoming
safe call before installing.

Can extend mechanism to have local certification
authorities as well as global.

Security, slide 7

Other Applications

Safe call mechanism suitable for many other things
besides active e-mail messages:

• Restrict incoming send commands in Tk.

• In commercial product, restrict access by
customers to internal commands.

• In device control applications, don’t allow users
total control over devices (could be dangerous for
some devices).

