
TCL/TK AS A BASIS FOR GROUPWARE

Mark Roseman

Department of Computer Science, University of Calgary
Calgary, Alberta, Canada T2N 1N4

Phone: (403) 220-7691 Fax: (403) 284-4707
Email: roseman@cpsc.ucalgary.ca

ABSTRACT
Tcl and Tk may prove an excellent environment for
developing groupware applications, yet much remains to
be done beyond the relatively simple TCP/IP extensions
which exist today. Our groupware research has provided a
number of useful models and a groupware toolkit which
could be reimplemented on Tcl and Tk to provide a basis
for groupware development. This position paper provides
some background on groupware and our own research, and
then suggests some of the advantages that Tcl and Tk
might provide for groupware developers. It also addresses
some of the areas of work which will need to be addressed
for groupware. These include the design of a shared
group object model, some extensions to both Tk’s
graphics model and event handling model to support
overlays, and the issue of cross platform development.

INTRODUCTION
Groupware is a relatively new area of computer science
research, focusing on computer systems that help groups
of people work together. It is an extremely diverse area;
electronic mail, network news, multi-user drawing
programs, shared window systems, collaborative writing
tools, group decision support systems, shared virtual
realities, and sophisticated audio and video media spaces
are all forms of groupware. Broadly, groupware can be
categorized along two dimensions: time (people working
at the same time or different times) and space (people in
the same room or distributed over a number of locations).

Groupware researchers are no less diverse. Groupware
falls within a larger research area called Computer
Supported Cooperative Work (CSCW), which has largely
evolved out of the Human Computer Interaction (HCI)
community. Groupware researchers include not only
computer scientists, but also psychologists, sociologists,
anthropologists, business researchers and others interested
in the many facets of how computers can support groups
of people working together. There’s much more to
groupware than just getting a communications channel
open between two machines!

Though groupware has become “trendy” in the last two
years, the products currently on the market have a long
way to catch up to the sophistication and novelty evident
in much of the current research found at numerous
universities and industrial research facilities. It is truly
an area with much untapped potential for high-tech
advancements.

CALGARY’S GROUPWARE RESEARCH
The University of Calgary has been active in groupware
research, under the direction of Dr. Saul Greenberg. The
following are some past and present projects.
• A shared terminal emulator called SHARE allows

several users to share the same Unix shell. A flexible
floor control system moderated access (who can type).

• GROUPSKETCH is a simple multi-user paint program
which spawned several more sophisticated variants.

• A multi-user structured drawing program called
GROUPDRAW features an underlying group object
framework to handle concurrency and ownership.

• L IVEWARE is a benign virus that automatically
exchanges data between users during casual contacts.

• One project is investigating the use of facilitation in
groupware and developing generic facilitation tools.

• One project assists in the problem of “making contact”
with potential collaborators, a difficult problem that
must be overcome for successful collaboration.

• GROUPKIT is a groupware toolkit (described shortly).
• Personalizable groupware helps in the problem of user

acceptance (described shortly).

GROUPK IT

GROUPK IT is a toolkit for building groupware that
generalizes much of our earlier work. For example,
“open protocols” (described below) are used to build a
flexible registration system, the group drawing
framework from GROUPDRAW was incorporated into the
toolkit, and other components from the drawing programs
such as gesturing — which is an important feature for
real-time groupware — are provided as toolkit primitives.

GROUPK IT was designed and built on top of Stanford’s
INTERV IEWS C++ toolkit. While this assisted with
some of the work (particularly by providing a nice
graphics model for creating new widgets), a number of
problems have resulted which makes the current system
less maintainable and usable than was hoped. Structural
changes in the widget model resulted in an incomplete set
of widgets and immense difficulty in customizing
existing widgets (which was an earlier strength of the
system). Documentation has been non-existant leaving
beginners with no assistance. Though GROUPK IT is
easy to use, its reliance on INTERV IEWS has made it
inaccessible to most users. Overall, INTERV IEWS has
not evolved as expected, and we are looking at Tcl/Tk as
an alternate platform for our work.

Personalizable Groupware
One of the problems with groupware is that the entire
group must be willing and able to use the same system,
otherwise it will be a failure — for the entire group, not
just the dissenting users. Contrast this with single user
software where a single user’s acceptance of a package
typically affects only the user.

As a result, there is great interest in making
personalizable groupware, allowing different users to see
the system differently according to their own needs and
preferences. We’ve developed a technique called open
protocols which allows new modules to be inserted into a
system long after the original system is designed,
allowing for new and unexpected uses of the system.
Being able to easily design these modules is an important
issue which will be addressed later.

ADVANTAGES TO TCL/TK FOR GROUPWARE
In many ways, Tcl and Tk show excellent promise as a
platform for groupware development. As a general
programming tool, it has many advantages: its rich
widget set (including a canvas and sophisticated text
editor), excellent documentation (online as well as the
upcoming book) and importantly a growing community
of users who almost daily add to the collection of tools
available. More specific to groupware, a number of areas
stand out, some of which are mentioned below.

Quick to Design New Interfaces
Development of interfaces with Tk is quick and painless
compared to alternatives such as Motif and Xt. This is
important in groupware for two main reasons.

First, because groups’ needs vary, groupware systems are
notoriously difficult to build correctly. An iterative
prototyping approach, suggested for single-user software,
is fundamental to building groupware. Groupware
interfaces must be designed quickly, and redesigned often.

Second, it may be desirable for end users (or at least
sophisticated representatives of the end user community)
to design new interfaces. Our personalizable groupware
work suggests application-specific building blocks may
be provided by the developer (e.g. as Tcl scripts) so users
can build their own modules, but still work must be done
by end users. Tcl and Tk may make this more possible.

Tcl Commands are Communication Protocol
A basic part of groupware is sending messages between
processes. A constant issue is the format of such
messages. Typically one converts between a native data
type (i.e. C integers, floats and lists of objects) into
strings and then converts back again on the other side.

Yet with Tcl, no conversion is necessary, everything
already is a string. As was nicely shown with the RPC
extensions in Tcl-DP, commands can be sent verbatim
over sockets and executed in the receiving end’s
interpreter. Tcl commands are the communication
protocol!

Flexible Bindings
Groupware often requires new widgets, or at least widgets
that behave differently than standard single-user widgets.
The typical solution is to design entirely new widgets, or
in object-oriented systems, subclass the original widgets.

Tcl and Tk present another solution: change the bindings
to redefine the behavior of existing objects. Since every
button click, every mouse move, and every key press can
be easily trapped, arbitrary operations can be invoked to
change the behavior of the widget to anything desired.
This also provides a powerful mechanism to experiment
with new behaviors interactively, and to do so with a
minimum of code. This flexibility of behavior is of the
utmost importance in developing new groupware widgets.

Easy to Separate Interface from Application
Single-user interface developers often argue that the
interface should be separated from the underlying
application. In groupware this becomes more desirable,
as dealing with interfaces at the same time as the very
complex underlying behavior of group objects is
exceedingly difficult. Further — again following the
personalizable approach — if different users are working
simultaneously with different interfaces to the same
objects, some separation of the interface is critical.

There are a number of approaches for separating interfaces
from underlying objects, ranging from hard-coded special
cases to constraint management systems. Tcl’s “trace”
function presents a very realistic solution to this
problem, so that interfaces can find out about changes to
their underlying object automatically.

FUTURE ISSUES
If a serious effort at groupware development were to made
based on Tcl and Tk, a number of areas would need to be
addressed. While some are reasonably application specific
and do not interfere with current directions of Tcl and Tk,
others present issues which may have a direct effect on
the core systems. Some of these effects could of course
benefit other application domains immensely. The
following represents some of the issues.

Group Object Management
An obvious issue in groupware is that of distributed or
“group” objects, objects where copies exist on several
different machines.

Tcl-DP has made a good initial start at this, providing
replicated objects whose fields (“slots”) can be changed by
any user. Changes are serialized (to keep consistent
states) by sending them to the slot’s “owner”, who
forwards changes to other networked copies of the object.

Though an elegant scheme, it does not yet deal well with
issues such as latecomers, persistence, and recovery if an
object’s owner crashes. More important for groupware
applications, it works only at the level of individual
slots, and ignores application level semantics, which
often includes locking of slots.

To give some examples of application semantics, the
group object model we define has three access levels to an
object: private (only an object’s owner sees it and can
modify it), public (everyone sees the object but only the
owner can modify it), and shareable (everyone can see and
modify it). This control can be important in some
applications. To illustrate the need for locking, imagine
a group object representing a line in a drawing program.
Two users should not be able to modify the same
endpoint of a line (the first person should obtain a lock,
drag the endpoint and release the lock). Yet this locking
must be finegrained, so that another user might be able to
drag the other endpoint of the line.

All of this could be accomplished using a strategy similar
to that employed by Tcl-DP, again using only Tcl
scripts. Our group object model could be directly
implemented in this manner. The use of Tcl scripts
could also provide the flexibility to experiment with
different object models transparently.

Bindings and Graphics Model for Overlays
In GROUPK IT , we relied extensively on overlays to
provide several group specific toolkit components.
Gesturing, important in groupware programs, is often
implemented with multiple cursors, bitmap cursors
which appear on other users’ windows to allow pointing
to specific items. These bitmaps follow the mouse
cursor and are displayed as an overlay on top of any other
running application. As another example, freehand
annotation (e.g. like proofreading marks) could be
overlayed on top of other applications.

Overlays have two requirements: drawing and input
handling. For drawing, typically objects underneath an
overlay will draw themselves, and then the objects in the
overlay draw themselves, resulting in the first appearing,
perhaps partially obscured, below the second. It is
important that this be very efficient, as both the
underlying application’s graphics and the overlay’s
graphics may be changing rapidly. It is unclear whether
Tk currently has the ability to support overlays in this
fashion. The canvas widget, in which arbitrary widgets
can be embedded, does provide a starting point for a
general overlay mechanism.

Input events must also be handled carefully. The strength
of the overlay approach is that the underlying application
should be completely unaware that the overlay is present.
This requires all input events to be received by both the
overlay and the underlying application. For example, a
mouse move event must be seen by a gesturing overlay
(in order to move the bitmap cursor) and also the
underlying application which may have use for the event.
This may be quite difficult to implement with the current
event binding scheme in Tk.

Cross Platform Applications
People work in heterogeneous environments. If a
groupware system is designed for such an environment, it
must work on all the target platforms, or risk failure
when some users refuse to use it. While Tcl is

reasonably portable, Tk is not. This is an issue
confronting many Tcl developers, not just for groupware.

There are two approaches to this problem in terms of
groupware: make Tk run on other systems or not. The
issues here are many and probably well-known, not the
least of which are all the X specific concepts included in
the language itself (subwindows, X font names, event
types, window manager calls, etc.). Though Xlib
emulation exists for non-Unix machines, this may not be
a desirable alternative, particularly since the result will
not be in the “native” look and feel of the target machine.

The other approach is not to make Tk portable, but just
to build different interfaces on different machines. Build a
different toolkit on every machine, probably Tcl
“wrappers” around a native toolkit. For example, we did
a quick bit of work to provide a Tk style of programming
on the Macintosh, yet using the Mac toolkit for buttons,
labels, etc. This approach means reimplementing the
entire interface on every new platform. However, if the
“separate application from interface” approach advocated
above is followed, it will reduce this effort substantially.

PROLOGUE
We have recently implemented most of our groupware
toolkit in Tcl and Tk using the Tcl-DP extensions.
Prototype applications to date include: a brainstorming
tool, a voting tool, a post-it note application, a shared
whiteboard, simple shared structured graphics and group
hypertext programs, a primitive group text editor, a
network telephone interface, and several registration
systems including a start on our making contact system.

The resulting Tcl/Tk toolkit is not only significantly
shorter than the IN T E RV IEWS version, but also
significantly easier to build applications with. While the
canvas widget has sufficed to provide some overlay
capabilities, it is still not sufficient in the general case.
Our work in the near future will focus on larger and more
robust applications, further developing our group object
model, and integrating distributed information sources
using lightweight Tcl servers.

SELECTED PAPERS
Greenberg, S. (1991) “Personalizable groupware:

Accommodating individual roles and group differences.”
In Proc. of the 2nd European Conference on Computer
Supported Cooperative Work (EC-CSCW '91).

Greenberg, S., Roseman, M., Webster, D. and Bohnet,
R. (1992) “Human and Technical Factors of Distributed
Group Drawing Tools.” Interacting with Computers,
4(3), pp. 364-392.

Roseman, M. and Greenberg, S. (1992) “GroupKit: A
Groupware Toolkit for Building Real-Time Conf-
erencing Applications.” In Proc. of the Conference on
Computer-Supported Cooperative Work (CSCW '92).

Roseman, M., and Greenberg, S. (1993). Building
Flexible Groupware Through Open Protocols. In
submission.

