
any of the events. This is in contrast to domain-
specific monitors like the parsing monitor
described in Section 3 which placed a semantic
interpretation onrecognition events.

Figure 5 shows the breakpoint monitor after the
first example breakpoint above has been set. The
user has to named the breakpoint “Line after
five”. Breakpoints can also be disabled or
deleted using this interface.

Figure 6 shows the user in the process of setting
the second breakpoint. The documentation
strings from the Dapto specification are dis-
played as aids. The text window is used to insert
the handler code. A similar interface allows
breakpoints to be altered.

The default mode of the monitor (not shown) is
to have the “Expression Handler” checkbutton
on. In this mode the user can just enter a Tcl
expression for the breakpoint condition more
closely approximating traditional breakpoint
facilities. The monitor will wrap the following
code around the expression to form the handler:

if { expression} {
return 1;

}

Other generic monitors have been constructed.
Time and frequency profiles were built using
event timestamps and counts. Similarly, event
transcripts are easily obtained and are useful in
some monitoring situations.

5 Conclusion

Tcl and Tk have enabled an extremely flexible
monitoring environment to be constructed in a
short period of time. Using Tk to build the
graphical interfaces to monitors permitted pre-
sentation ideas to be prototyped quickly. Having
Tcl as the basis of the event and data operation
mechanisms has resulted in a simple but power-
ful facility. Although detailed performance anal-
ysis is yet to be conducted, Noosa operates fast
enough to enable monitoring to be done effec-
tively. There is room for improvement in the
event generation process.

The Eli monitors have greatly improved the
development process for Eli programs. Previ-

ously users had to rely on using debuggers such
as GDB or Dbx on the Eli-generated code. This
required extensive knowledge of the internals of
this code which was either unavailable to most
Eli users or time-consuming to obtain and soon
out-of-date. Noosa allows developers of tools
used in Eli to build monitoring interfaces that
isolate monitors (and hence users) from the
details of their tools. It is now possible to moni-
tor Eli-generated programs at the level of user
specifications rather than generated code. Appli-
cation to other problem domains is showing that
the techniques have general applicability and
utility.

References

[1] B. Plattner, J. Nievergelt. Monitoring pro-
gram execution: a survey.Computer, 14(11),
pages 76-93, November 1981.

[2] A. M. Sloane. Domain-level execution moni-
toring. Ph.D. Thesis, University of Colorado,
Boulder. 1993. In preparation.

[3] R. M. Stallman, R. H. Pesch.The GNU
source-level debugger. Free Software Founda-
tion. 1993.

[4] M. A. Linton. The evolution of Dbx.
USENIX Summer Conference, pages 211-220,
1990.

[5] M. H. Brown. Algorithm animation. The
MIT Press, 1986.

[6] J. K. Ousterhout. Tcl: an embeddable com-
mand language.USENIX Winter Conference.
1990.

[7] J. K. Ousterhout. An X11 toolkit based on
the Tcl language.USENIX Winter Conference.
1991.

[8] R. W. Gray, V. P. Heuring, S. P. Levi, A. M.
Sloane, W. M. Waite. Eli: a complete, flexible
compiler construction system. Communications
of the ACM, 35(2), pages 121-131, February
1992.

[9] R. E. Griswold, M. T. Griswold.The Icon
Programming Language.Prentice-Hall. 1983.

Figure 5. Noosa Breakpoint Monitor

Figure 6. Setting a Breakpoint

build a string scanning monitor for the Icon pro-
gramming language [9]. Currently a monitor for
memory leaks in C programs is being con-
structed. Details of these monitors will appear in
[2].

4 Breakpoints
Execution control in conventional debugging
systems is performed viabreakpoints [3,4]. Each
breakpoint is associated with a source code loca-
tion and possibly other information such as con-
text conditions or counts. A breakpoint triggers
when its location is reached during execution
and (say) the condition is true or decrementing
the count yields zero. Data breakpoints are vari-
ants that allow conditions to be implicitly tested
at all locations in the program at once. Usually
when a breakpoint of any kind triggers, execu-
tion is stopped or a sequence of user-defined
debugger commands are executed.

The Noosa system can be used to provide
sophisticated breakpointing capabilities.
Because Noosa is designed to hide the source
code of program components from monitors it is
not possible to attach breakpoints to source loca-
tions. Instead breakpoints are attached to event
types giving them an abstract feel.

Breakpoints can be achieved by specifying event
handlers that return one. Recall that execution of
the subject is suspended if any of the handlers
for an event return one. Thus the following han-

dler for recognition events will cause exe-
cution to stop as soon as a piece of text past line
five is recognized:

if {$linebeg > 5} {return 1}

Because handlers execute in a full Tcl interpreter
in the subject they can use any Tcl facility. For
example, they can use global variables to com-
municate. For example, the handler:

set ret 0
if {$prod == 12 && $last == 1} {
 set ret 1
}
set last $prod
return $ret

will cause a stoppage whenever production
twelve is recognized immediately after produc-
tion one. Similar techniques can be used to
implement temporary breakpoints that can only
be triggered once, or counting breakpoints that
are triggered after a set number of times. Data
breakpoints are trivial providing the monitoring
interface includes an event that represents
changes to the data of concern.

To simplify the setting of breakpoints, Noosa
provides a generic breakpoint monitor
(Figure 5). A generic monitor is one that does
not depend on the semantics of events or data
operations. The breakpoint monitor lets users
specify arbitrary handlers for events. The moni-
tor itself has no knowledge of the meaning of

event recognition “Recognition of a production during parsing”
 (int prod “Index of the production”,
 int uses “Number of preceding recognitions subsumed”,
 int linebeg “Line number of beginning of extent”,
 int colbeg “Column number of beginning of extent”,
 int lineend “Line number of ending of extent”,
 int colend “Column number of ending of extent”);

operation get_conc_prod “Retrieve text of a concrete production”
 (int index “Index of the production”): str
{
 extern char *conc_prods[];
 sprintf (interp->result, “%s”,conc_prods[index]);
}

Figure 4. Monitoring Interface for Parsing Monitor

3.1 Monitoring Interface

The Eli parser generators have been modified to
provide a simple monitoring interface that sup-
ports the parsing monitor. These changes repre-
sent less than one per cent of the code of each
tool.

A recognition event is generated whenever
a piece of input text is recognized. Also a
get_conc_prod operation provides access to
the productions in the concrete grammar used to
generate the parser. The complete Dapto specifi-
cation for this interface is given in Figure 4. The
implementation ofget_conc_prod uses a
table of productions produced by the parser gen-
erator. In Figure 4 quoted strings are used for
documentation purposes (see the next section).

The handler used by the parsing monitor to react
to recognition events is:

nsend parse_recog $prod $uses \
 $linebeg $colbeg $lineend \
 $colend

This simply sends the attribute values to the
monitor where the Tcl procedure
parse_recog stores them for later use.

Other monitors have been built dealing with the
following aspects of Eli-generated programs:
string storage, lexical analysis, name analysis,
message generation, scoping, symbol table
maintenance, and semantic analysis (attribute
grammar monitoring). Domains other than Eli
have also been investigated. Noosa was used to

Figure 3. Eli Parsing Monitor

2.4 Dapto

Dapto is a tool that largely automates the genera-
tion of the domain-specific code for a subject. It
is used by the implementor of a reusable compo-
nent who must design the monitoring interface
for the component.

Dapto takes a specification of the monitoring
interface of a component and generates the nec-
essary code to implement event generation for
events in the interface and interfaces to its data
operations. Event types are specified by giving
their signatures, that is, the name of the event
type, and the names and types of its attributes.
Data operations are given by their signatures and
their bodies. The latter are arbitrary fragments of
C code to implement the operation. Normally
this C code accesses program data structures to
implement the operation. Section 4 contains an
example of a Dapto specification.

From a monitoring interface specification Dapto
generates the following:

1. A C implementation of thegenerate_t
function for each event typet . These func-
tions store the values of the event attributes in
global Tcl variables, call the event handlers
and either return to normal program execution
or suspend execution depending on the return
values of the event handlers.

2. C implementations of a Tcl command proce-
dure for each data operation. The implemen-
tation of an operation consists of the C code
provided in the specification augmented with
a generated test to check the validity of its
argument list.

3. Initialization code to install the data operation
command procedures into the subject’s inter-
preter as primitives.

4. Tcl code representing a database of informa-
tion about the monitoring interface. This code
is loaded by the frontend and enables it to
decide which monitors are applicable to a
subject and lets monitors display interface
information (see Section 4).

The C code generated by Dapto is compiled with
the regular code for the program to form an exe-
cutable for the subject.

3 Parsing Monitor

Eli [8] generates compilers from very high-level
specifications of their functionality. Eli incorpo-
rates two LALR(1) parser generators. This sec-
tion briefly describes a monitor for the
components generated by these tools. Because
the monitor communicates with the components
via a well-defined monitoring interface it is able
to work with the outputs of either of the tools.

Parsing is the process of determining the struc-
ture of an input text given a stream of tokens
from that input text produced by a lexical ana-
lyzer. Eli allows text structure to be described by
context-free grammars. The parsing monitor
allows the relationship between a context-free
grammar and a given input text to be monitored.
This allows incorrect structuring to be easily
diagnosed.

Figure 3 shows a typical view of the Eli parsing
monitor constructed using Noosa. Selecting a
location in the input text (lower text window)
causes the upper text window to display the con-
text-free productions (if any) that were used to
recognize that text location. In this case the high-
lightedx identifier was selected.

Displayed productions range from most general
at the top to most specific at the bottom. Thus the
first production displayed is the root of the gram-
mar. The others represent a path in the parse tree
from the root to the most-specific node repre-
senting the selected location. In this case the pro-
ductions identify thex as a Name inside a
VariableNameUse contained in aVari-
ableAccess in an AssignmentState-
ment and so on. The underlined symbols in all
but the last production denote the left-hand side
symbol of the next production. For example, the
IfStatement shows that the following
AssignmentStatement is in the then-
clause rather than theelse- clause.

Selecting a production instance in the upper win-
dow will highlight the extent in the input text
that was recognized by that production instance.

monitors and are executed by the subject. Opera-
tions can access or update program data.

The set of events and data operations supported
by a component form itsmonitoring interface.
The monitoring interface of a program is the
union of the monitoring interfaces of the compo-
nents from which it is constructed.

Two changes to a program are necessary to turn
it into a Noosa subject:

1. Event generation sites must be identified and
function calls inserted at those points to gen-
erate appropriate events. For an event typet ,
a function generate_t is provided. Its
arguments are the attributes of the event type
(if any) and are used to distinguish between
instances of a single event type.

2. The program must be linked with extra code
containing: a Tcl interpreter, implementa-
tions of thegenerate_* functions, and
implementations of the data operations.

Event generation sites must be identified by
hand. Since the target software for Noosa is
based on reusable component libraries, the cost
of site identification within a component can be
amortized over many uses of the component. In
other settings tools such as compilers can auto-
matically insert event generation.

2.3 Monitors and Monitoring Interfaces

Monitors interact with the subject solely through
monitoring interfaces.Event handlers can be
installed in the subject by monitors to enable
reactions to events. Each handler is an arbitrary
piece of Tcl code that is associated with an event

type and is executed whenever events of that
type are generated. The values of event attributes
are available to each handler as global Tcl vari-
ables. If necessary, handlers can send messages
to monitors usingnsend enabling displays to
be updated and so on.

To enable monitors to control the execution of
the subject, the return value of a handler is used
to determine whether or not execution should
continue after the current event generation. If
any of the handlers for an event return one, exe-
cution is stopped at the event generation site. If
all handlers return zero, execution continues.
When execution stops, a syntheticstopped
event is generated by the subject. This event can
have handlers associated with it just like
domain-specific events.

While execution is stopped, data operations can
be invoked by monitors. Each operation is
present as a Tcl procedure within the subject.
Nsend is used to transmit a call of an operation
to the subject. Once in the subject the call is exe-
cuted and its value is returned to the calling
monitor. Implementations of data operations are
given as arbitrary C code (see the next section),
so any program data can be accessed.

Two synthetic eventsinit andfinit are gen-
erated by Noosa when the subject starts and fin-
ishes execution, respectively. They enable
monitors to perform initialization and finaliza-
tion for each subject run.

Figure 2. Subject Control Window

The paper concludes with a brief consideration
of the efficiency and usability of the system.

2 Noosa
Figure 1 shows the top-level architecture of
Noosa. The programmer interacts with thefron-
tend to select appropriate monitors and interacts
with each monitor to specify desired monitoring
operations. The monitors in turn interact with the
subject during execution to implement those
operations.

The main window of the Noosa frontend is
shown in Figure 2. Immediately below the menu
bar the current status of the subject is displayed.
The “Program” entry sets the current program
name and any command-line arguments that are
to be used when it runs. The “Database” entry
sets the Noosa database for the program (see
Section 2.4). The “Monitors” pull-down menu
allows the user to create instances of available
monitors.

Three buttons give the user control over the exe-
cution of the subject. “Run” starts a new subject.
“Continue” allows continuation from a stoppage
(see Section 4). The subject can be terminated
with the “Kill” button.

2.1 Communication

All communication between the subject and the
frontend is performed at the level of Tcl code.

Both the subject and the frontend contain Tcl
interpreters. A primitive callednsend is used to
transmit an arbitrary piece of Tcl code in either
direction and return the result of evaluating it.
The functionality ofnsend is the same as the
Tk primitive send but a named pipe implemen-
tation is used instead of communication via the
X server.

2.2 The Subject

When the subject is initially run it executes nor-
mally except for event generation. Events are
used to convey state change information to mon-
itors and may be generated at arbitrary points
during execution calledevent generation sites.
The possible events and their semantics are not
constrained by Noosa; they are chosen to match
the problem domain.

Although events are theoretically enough to con-
vey the complete state of the subject to the mon-
itors, such an approach is impractical. In many
cases it would be necessary for the monitors to
duplicate the entire state of the subject just in
case the user might be interested in some of it. In
practice the user is only interested in a small por-
tion of available information, so much work can
be wasted.

Noosa usesdata operations to augment events.
These are arbitrary routines that can be called by

Subject

Monitor 1

Monitor 2

Monitor N

Frontend

Programmer

Figure 1. Noosa Architecture

Anthony M. Sloane

Department of Computer Science
Campus Box 430, University of Colorado

Boulder, CO 80303-0430, USA
tony@cs.colorado.edu

Abstract
Execution monitoring is the observation of a
program while it is running. Debugging and pro-
filing are two commonly applied forms of execu-
tion monitoring. This paper describes experience
using Tcl and Tk in the development of Noosa,
an event-based execution monitoring system.
We present an overview of the system concen-
trating on aspects that involve Tcl and Tk. Of
particular interest is the flexibility achieved by
using Tcl as the basis of both the event language
and the communication between the monitoring
subject and the monitors themselves.

1 Introduction
Execution monitoring [1] is a vital part of any
software development process. Current technol-
ogy does not permit us to construct complex
software that is guaranteed to work the first time
it is run. Even once a program performs its func-
tion correctly, it may not (say) perform it quickly
enough.Debuggingis a form of execution moni-
toring concerned with observing execution from
the point of view of correctness;profiling con-
siders execution with an eye on usage of
resources such as processor time or memory
space

Noosa[2] is an execution monitoring environ-
ment designed for software constructed from
reusable components. Noosa unifies ideas from
conventional debugging systems [3,4] and algo-
rithm animation [5].

We concentrate on software constructed using
reusable components such as abstract data struc-
tures, instances of abstract data types or
instances of classes. This kind of software uti-
lizes functional interfacesto insulate compo-

nents from each other. A component’s functional
interface allows other components abstract
access to its algorithms and data structures.
Implementation details such as data representa-
tions or specifics of algorithms are hidden
behind the functional interface. Components are
thus able to evolve more independently than
they could if such details were visible.

The central idea in Noosa is to isolate execution
monitors from the details of the implementation
of the subject of the monitoring. This separation
simplifies monitors and insulates them from
most changes in program components. We
definemonitoring interfacesthat are analogous
to functional interfaces except that they hide
component implementations from monitors
rather than from each other. In an implementa-
tion the two kinds of interfaces may be imple-
mented using the same or different mechanisms.
Noosa implements them differently because the
subject and the monitors reside in different oper-
ating system processes.

Tcl [6] plays a central role in the implementation
of Noosa over and above the fact that the moni-
tors are built using Tk [7]. Section 2 describes
the architecture of Noosa and explains how Tcl
is used to provide powerful modes of interaction
between the monitors and the subject. Section 3
illustrates this discussion with an example of a
parsing monitor constructed for the Eli compiler
construction system [8]. This is an example of a
domain-specific monitor: a monitor that provides
facilities for programs operating within a partic-
ular problem domain. In Section 4 we give an
example of ageneric monitorthat implements
breakpointing. Generic monitors are indepen-
dent of the domain in which the subject operates.

Noosa: Execution Monitoring using Tcl and Tk

