
Experiences with modularizing the Tcl core.

Andreas Kupries ActiveState Corp 580 Granville Vancouver, BC CA

andreask@ActiveState.com

ABSTRACT
As part of a contract with Cisco for their migration of the
Tcl interpreter embedded in IOS, their router OS, from ver-
sion 7.6 to version 8.3.4, ActiveState was tasked with re-
ducing the static and stack memory requirements of the
Tcl core. To this end, it modularized the 8.3.4 Tcl core
so that features not required by Cisco could be compiled
out of the core. This reduced the static size of the core, and
reduced the load on the C stack by moving big structures
to heap. Here we describe our experiences with perform-
ing these tasks, the techniques we used, the difficulties we
had, and our conclusions regarding the future work on these
tasks.

1. OVERVIEW
ActiveState was given the task of reducing both the static

and stack memory requirements of the Tcl core. A previous
attempt by Karl Lehenbauer to fit Tcl into smaller machines
[1] used an older and smaller versions of Tcl, version 6.7 as its
base. In contrast to this our customer explicitly requested
the usage of the 8.3.4 core, as part of an upgrade of his
systems from the 7.x series to 8.3.4.

It is not known which version of Tcl was the base for the
even earlier attempt of using Tcl in the Mars Pathfinder [2],
except that it definitely was a version released before the
introduction of bytecode compilation. Their approach was
even more radical than ours, by reducing the interpreter to
an absolutely minimal core of parser and basic supporting
facilities (tclParse.c, tclBasic.c), and then adding facilities
as required by their scripts.

Another project of interest is Rivendell by John Hall,
sometimes called PalmTcl [3]. This project is based upon Tcl
7.4 and ports the language to PalmOS-based PDA’s. The
changes to the base 7.4 core ANSIfy the code base, changed
the memory allocation, and split the code into sections, es-
sentially a number of interdependent dynamic libraries, to
deal with limits placed upon the size of such libraries (They
have to be smaller than 64 K). Although the description

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tcl ’2002 Vancouver, BC CA
.

claims that the code has been enhanced with reduced stack
usage no such changes were found.

Similar to Rivendell is Ashok Nadkarni’s Palm Tcl, again
a port of Tcl to the Palm OS, based on Tcl 7.6 [4]. This
project was not investigated.

We on the other hand have now modularized the Tcl core
(version 8.3.4) so that the features not required by our cus-
tomer can be compiled out of the core, at the discretion of
the user of the modified core.

We also reduced the load on the C stack through shrinking
big structures on the stack, or moving them to the heap
wholesale where shrinking was not possible. In this context
it is interesting to know that Karl Lehenbauer noted in his
paper [1] the stack requirements of the Tcl interpreter as the
major problem he encountered when doing the port.

The remainder of the paper is structured as follows. In
chapter 2 we explain which features were selected for mod-
ularization and how the excisable code was determined. In
the next chapter, 3 we present the results of the modular-
ization and compare the static size of the core with various
features removed.

Chapter 4 discusses the second major topic, the reduction
of the usage of the C stack by the Tcl interpreter to allow its
use in environments with limited stack space. The results
of our changes are presented chapter 5.

At last, chapter 6 discusses our conclusions, and chapter
7 possible future work in this area.

2. FEATURES OF THE CORE
Our first task was to reduce the overall size of a statically

build interpreter executable (tclsh) and/or interpreter li-
brary (libtcl.a). This was realized by making a number of
features provided by the standard interpreter optional, i.e
removable at will during compile time. With this an end-
user of the modularized core is free to remove any features
which are not needed by his application and thus to shrink
the space required for the executable or library.

The overall set of features which were initially made re-
movable were determined by the requirements of our cus-
tomer. In other words, we did not spent any time on fea-
tures possibly giving us a high gain for the effort, but only
on features our customer deemed irrelevant for his environ-
ment. The details however, i.e. the division of the features
named by our customer into the actual removable features,
were guided by the results of the discussions the community
had had on the newsgroup comp.lang.tclabout this topic
[5].

The chosen features are listed in Table 1, together with

the C preprocessor macros whose existence will activate the
removal of a particular feature. By default none of these
macros are defined. Setting the macro MODULAR TCLwill ac-
tivate all of these macros and thus remove the whole set of
features.

As Source Navigator crashed when processing the Tcl C
sources at that time we decided to conditionalize the code
by hand with support by the C compiler. This means that it
is possible that we missed code which could have been made
optional but currently is not. This may happen especially
for a function F which is shared by removable features, and
only such. In that case removing all features requiring F
will not remove F. This deficiency has to be addressed in
the future.

Starting at the topmost function for a feature, usually the
function implementing the command to remove we followed
the sources and determined the public and non-public non-
static functions reachable from this point. After excluding
them from the sources through ifdef’s a complete build was
performed and the compiler log analyzed to find all func-
tions which are actually required by other parts of the core.
These functions were made unconditional again. Additional
runs of the compiler then allowed us to find all static func-
tions required only by the excluded functionality. These
were excluded as well.

3. COMPARISON OF CORE SIZES
Compiling the modified Tcl core for a number of different

flags combinations yielded Table 2. It shows us how much of
the object code in a static interpreter is used by the various
features.

It is obvious from looking at this table that most of the
chosen features reduce the overall size of the static inter-
preter by only very small amounts of space. Only the file
system code and the code dealing with the management of
channels beyond the standard channels reduce the size by
moderately significant amounts of space.

There is obviously room for improvement here. The ques-
tion is, where are the features whose removal will reduce the
library by significant amounts of space ? Our best answer
so far is Table 7. This table lists the 36 largest object files
and thus points us to the main areas we should look into.

Based on that data several possibilities for additional fea-
tures to be removed are discussed in more detail later, in
chapter 7, about our future work.

4. REDUCTION OF STACK USAGE
The second task was to reduce the load placed on the C

stack by the interpreter to enable the interpreter to run in
environments with limited stack space. In the case of our
customer this would be a router.

To this end three different techniques were used:

1. Identification of variable sized data types with a large
default size, instances of which are placed on the stack.

For such types we reduced their default size either
through an existing preprocessor macro determining
their size, or by introducing such a macro and pro-
ceeding as before.

An example of such a type is Tcl DString.Its base
size is 3 ∗ sizeof(long) on typical 32bit systems, i.e.
12 bytes. However it also allocates a static character

buffer as part of the structure to handle small strings
without having to allocate space on the heap. The
macro controlling the size of this buffer is
TCL DSTRING STATIC SIZE.Its default value is 200, driv-
ing the size of the whole structure to 212 bytes.

Table 3 shows the macros introduced in this way.

2. Identification of large variables on the stack which can-
not be shrunk. For these we devised a set of macros
for the declaration and use of such variables whose im-
plementation can be switched between the allocation
of such variables on the stack and their allocation on
the heap.

An example of the usage of these macros can be found
in the file generic/tclCompCmds.c,see the function
TclCompileIncrCmd:

int

TclCompileIncrCmd(interp, parsePtr, envPtr)

Tcl_Interp *interp;

Tcl_Parse *parsePtr;

CompileEnv *envPtr;

{

Tcl_Token *varTokenPtr, *incrTokenPtr;

TEMP (Tcl_Parse) elemParse;

...

STRING (160, buffer);

NEWTEMP (Tcl_Parse,elemParse);

NEWSTR (160, buffer);

envPtr->maxStackDepth = 0;

if ((parsePtr->numWords != 2) &&

(parsePtr->numWords != 3)) {

...

RELTEMP(elemParse);

return TCL_ERROR;

}

...

}

Figure 4 shows side by side the two implementations
for allocating temporary variables on either the stack
or the heap. If the macro TCL STRUCT ON HEAPis de-
fined during compilation temporary variables will be
allocated on the heap.

3. Miguel Sofer1 provided us with a modified engine for
the execution of bytecode. This engine does not invoke
itself recursively when calling a byte-compiled proce-
dure from other byte-compiled code. It rather jumps
directly back into its own main loop, reusing the state
variables on the C stack. The actual state of the en-
gine is saved to and restored from the Tcl evaluation
stack, which is managed on the heap. This means that
calling Tcl procedures inside of Tcl procedures, and es-
pecially recursion of Tcl procedures does not consume
any C stack anymore.

This new executor was named NRE, for “non-recursive
engine”.

1Mail: <mig@utdt.edu>

Table 1: Removable features
Macro Removed feature

TCL NO SOCKETS Channel driver ”tcp”
TCL NO TTY Channel driver ”tty”
TCL NO PIPES Channel driver ”pipe”
TCL NO PIDCMD Command [pid]

TCL NO NONSTDCHAN Creation of channels beyond stdin, stdout and stderr
TCL NO CHANNELCOPY Channel copying, C/Tcl, [fcopy]
TCL NO CHANNEL READ Command [read]and “Tcl ReadChars”
TCL NO CHANNEL EOF Command [eof]

TCL NO CHANNEL CONFIG Command [fconfigure]and Tcl GetChannelOption
TCL NO CHANNEL BLOCKED [fblocked]

TCL NO FILEEVENTS [fileevent]and underlying APIs
TCL NO FILESYSTEM Everything related to the file system
TCL NO LOADCMD [load]and machinery below
TCL NO SLAVEINTERP Slave interpreters
TCL NO CMDALIASES Command aliases

Table 2: Size of libtcl.afor selected variants
Flags lib/libtcl8.3.a

Size, absolute Size, relative Shrinkage, relative

490124 100.00 0.00
TCL NO CHANNEL EOF 489964 99.97 0.03
TCL NO CHANNEL BLOCKED 489940 99.96 0.04
TCL NO PIDCMD 489824 99.94 0.06
TCL NO CHANNEL READ 489420 99.86 0.14
TCL NO TTY 488268 99.62 0.38
TCL NO CHANNELCOPY 488032 99.57 0.43
TCL NO LOADCMD 487264 99.42 0.58
TCL NO CMDALIASES 486576 99.28 0.72
TCL NO SLAVEINTERP 485080 98.97 1.03
TCL NO CHANNEL CONFIG 484932 98.94 1.06
TCL NO SOCKETS 484428 98.84 1.16
TCL NO FILEEVENTS 484376 98.83 1.17
TCL NO SLAVEINTERP 480624 98.06 1.94
TCL NO CMDALIASES

TCL NO PIPES 480136 97.96 2.04
TCL NO NONSTDCHAN 463544 94.58 5.42
TCL NO FILESYSTEM 440940 89.96 10.04

MODULAR TCL 403228 82.27 17.73

Table 3: Adaptable default sizes
Macro Default size Meaning, Location of usage

TCL DSTRING STATIC SIZE 200 Default static buffer in Tcl DString
TCL FMT STATIC FLOATBUFFER SZ 320 generic/tclCmdAH.c,line 1978
TCL FMT STATIC VALIDATE LIST 16 generic/tclScan.c,line 266
TCL FOREACH STATIC ARGS 9 generic/tclCmdAH.c,line 1735
TCL FOREACH STATIC LIST SZ 4 generic/tclCmdAH.c,line 1739
TCL FOREACH STATIC VARLIST SZ 5 generic/tclCompCmds.c,line 621
TCL RESULT APPEND STATIC LIST SZ 16 generic/tclResult.c,line 458

generic/tclStringObj.c,line 1199
TCL MERGE STATIC LIST SZ 20 generic/tclListObj.c,line 1009

generic/tclUtil.c,line 831
TCL PROC STATIC CLOCALS 20 generic/tclExecute.c,line 6272
TCL PROC STATIC ARGS 20 generic/tclProc.c,line 751
TCL INVOKE STATIC ARGS 20 generic/tclBasic.c,line 1782

generic/tclBasic.c,line 1857
generic/tclBasic.c,line 2951
generic/tclParse.c,line 1332

TCL EVAL STATIC VARCHARS 30 generic/tclParse.c,line 1166
TCL STATS COUNTERS 10 generic/tclHash.c,line 306

generic/tclLiteral.c,line 898
TCL LSORT STATIC MERGE BUCKETS 30 generic/tclCmdIL.c,line 2680

Table 4: Switchable temporary variables
Macro Heap Stack
TEMP(t) t * t
ITEM(var,item) var → item var . item
REF(var) (var) &(var)
NEWTEMP(t,var) (var) = (t *) ckalloc(sizeof(t))
RELTEMP(var) ckfree((void*)(var))
STRING(n,var) char* var char var [n]
NEWSTR(n,var) (var) = (char *) ckalloc(n)

To identify the hot spots of stack usage, and from there
the variables and data structures causing them, we semi-
automatically instrumented a copy of the base sources with
code monitoring the entrance to and returns from all func-
tions in the interpreter and also recording the the location
of the stack pointer for each call.

This instrumentation was only semi-automatic because
the script used to insert the code was very simple and did
not recognize all possible C syntax for return statements and
function calls. About 25 % of the instrumented code had to
be reworked manually to get the instrumentation code to
work properly in them. There were two big offenders in this
regard.

• The regular expression engine. It hid lots of return
statements in C preprocessor macros and also used a
number of unbraced if statements, i.e.

if (...)

return X;

causing the instrumentation script to change the se-
mantics of the instrumented code.

• Tail-calls scattered throughout the code, i.e.

foo ()

{

...

return bar ();

}

These were rewritten to

foo ()

{

...

X = bar ();

return X;

}

allowing the insertion of the instrumentation code be-
tween the called function and the return of the caller
itself.

The inserted code manages a logical duplicate of the C
call stack on the heap and uses that to record both the
names of the active functions and the locations of the cpu
stack pointer for them. By comparing the location of the
stack pointer before the call of a function F and its location
inside, it was possible for us to deduce the amount of C stack
space consumed by F.

This method also records the amount of stack required
for function linkage, i.e. stack management done by the
C compiler. This is no true disadvantage as this amount is
usually small, and more important, constant. Because of the
latter this does not disturb the ranking of functions when
sorting them by the amount of stack they require.

As the execution of the inserted code causes a noticeable
slowdown of the interpreter additional processing beyond
the comparison of the stack pointer is not done. Instead we
write the information about the association between func-
tions and required stack directly to a log file. After each

run a number of external scripts is used to postprocess the
logged data. The result is a sorted list where the functions
consuming the most stack are shown at the top. Thus iden-
tifying the hot spots to look at.

Instead of trying to devise a Tcl application which ex-
ercises all parts of the interpreter we simply executed the
testsuite that comes with the Tcl core to generate the stack
traces.

5. STACK REDUCTION RESULTS
To test the effectiveness of our changes to the core in

reducing usage of stack we used the testsuite again, but
with a twist. Using a special script we ran each of the 7879
tests multiple times, with an ever-shrinking stack, until it
failed. The size of the stack for which a test failed first was
recorded. The initial size of the stack was 48 K and reduced
by 1 K per iteration.

Running this with unmodified and modified cores then
allowed us to compare how the consumption of stack was
changed by our modifications. The results of these com-
parisons for selected build variants are shown in the Table
5.

The first three columns in each these two tables list the
minimal amount of stack required by any test during its
execution, the maximal amount required by at least one
test during its execution, and the average amount of stack
required to execute a test.

For the values in the last three columns each configura-
tion (except for the first) was compared to the configuration
preceding it in the table. To facilitate this the system com-
puted the difference in stack consumption for each test and
then recorded minimal, maximal and average difference. A
positive difference means that the configuration required less
stack than the one it was compared to.

The line “Base” in Table 5 refers to the unmodified 8.3.4
core. It was compiled with basic compiler optimizations (-
O). The other three lines refer to the modular core with
its non-recursive byte code engine. It was always compiled
with basic compiler optimizations (-O), but different settings
for the switches affecting the usage of the C stack. Which
switches were activated is listed in Table 6. An entry of
“—” means that the switch was not activated and set to its
default value.

We can see that the basic overhead of stack required by
the test framework amounts to 31 K for the unmodified core.
There are two tests breaking the initial limit of 48 K stack,
these are “interp-29.1” and “interp-29.2”. Both are testing
the handling of the recursion limit of the Tcl core.

The introduction of the non-recursive engine alone (con-
figuration “Stack (Zero)” reduces the average consumption
of stack by nearly 4 K. Especially noteworthy is that now no
test is breaking the initial limit of 48 K anymore, not even
the two tests checking the recursion limit mentioned before.
Actually these two tests now require nothing more than the
new minimum overhead of 27 K stack, accounting for the
reported maximal reduction of 21 K.

Adding the basic set of switches (configuration “Stack
(Basic)”) to shrink variables on the stack, or move to them
to the heap reduces the consumption of stack by another
near half K, bringing the reduction up to slightly more than
4 K on average. So these switches do have an effect, but not
as much as the new byte code engine.

Setting all possible switches (configuration “Stack (All)”)

Table 5: Stack consumption changes
Min Max Avg d/Min d/Max d/Avg

Base 31 48 31.227
Stack (Zero) 27 39 27.449 0 21 3.779
Stack (Basic) 27 35 27.065 0 8 0.384
Stack (All) 27 35 27.065 -3 2 -0.001

Table 6: Stack reduction switches
Macro No settings Basic setting Full setting

TCL DSTRING STATIC SIZE — 1 1
TCL FMT STATIC FLOATBUFFER SZ — 1 1
TCL FMT STATIC VALIDATE LIST — — 1
TCL FOREACH STATIC ARGS — 1 1
TCL FOREACH STATIC LIST SZ — 1 1
TCL FOREACH STATIC VARLIST SZ — — 1
TCL RESULT APPEND STATIC LIST SZ — 1 1
TCL MERGE STATIC LIST SZ — — 1
TCL PROC STATIC CLOCALS — 1 1
TCL PROC STATIC ARGS — — 1
TCL INVOKE STATIC ARGS — 1 1
TCL EVAL STATIC VARCHARS — — 1
TCL STATS COUNTERS — — 1
TCL LSORT STATIC MERGE BUCKETS — — 1
TCL STRUCT ON HEAP n y y

we find that this is actually slightly worse than using only
the basic set. It is unclear however if this a measuring prob-
lem or a true worsening. It is also unclear if the expected
further reduction is missing because the testsuite is not ex-
ercising these parts of the core, or if the affected variables
cause a reduction which is too small to be measured at all.

6. CONCLUSIONS
It is possible to reduce the size of the static interpreter,

however the exact reduction is highly dependent on the fea-
tures chosen for removal.

In contrast reducing the amount of C stack consumed by
the interpreter was a definite success, with Miguel Sofer’s
new byte code engine accomplishing most in this area. It
is highly recommended to port this engine to Tcl 8.4. The
other changes also accomplish their goal, but not as much
as the NRE.

7. FUTURE WORK
The work on the modularized core is currently on hiatus.

However, before that happened, we briefly investigated the
following possibilities for additional optional features, with
estimates for amount of work and possible gain. It should
also be noted that the sources of the modularized core are
available through the Tcl CVS at SourceForge, under the
branch-tag mod-8-3-4-branch. The license is the same as
for the unmodified Tcl core itself.

The estimates are given in both Lines Of Code (LOC)
for the sources, and a percentage of the total size of the
static library. The lines of codes were counted using ”wc
-l”. Nothing was done to take comments into account. This
means that the percentages given below can be seriously
off (overestimation) given the extensive commenting of the
Tcl core code. The percentages are based on the contents

of Table 7 and Table 8, which list the sizes of the various
object files.

The whole interpreter (115 files, matching the glob pat-
tern tcl/{generic,unix}/*.c)2comes in at 3214256 LOC
and 486648 Byte. This is 100 %.

1. Removal of the event system at large (Commands [after],
[vwait], and [update]).

File Touched
tclInt.h 1 line
tclTimer.c 1129 lines (all)
tclBasic.c 3 lines
tclEvent.c 547 lines (about half3)
tclNotify.c 1081 lines (all)
tclUnixNotfy.c 1050 lines (all) 4

tclUnixEvent.c 77 lines (all) 4

tclWinNotify.c 522 lines (all) 4

tclMacNotify.c 581 lines (all) 4

4991 lines 0.15 %
binary 2.30 %

2. Removal of the handling of binary data (Command
[binary]).

File Touched
tclBasic.c 1 lines
tclInt.h 2 lines
tclBinary.c 1552 lines (all)

1555 lines 0.04 %
binary 1.60 %

Alternative: Leave Tcl ObjType “tclByteArray” in.

2And without files supporting the testsuite
3The file contains code exit handlers too, which have to stay.
4These files are not relevant to the IOS port, but will still
have to be deactivated in the standard core.

Table 7: Object sizes I
Object file #byte % of Total

regcomp.o 40368 8.30
tclExecute.o 26540 5.45
tclIO.o 25296 5.20
tclCmdMZ.o 17160 3.53
tclBasic.o 16656 3.42
tclVar.o 16584 3.41
tclCompCmds.o 16256 3.34
tclCompile.o 16024 3.29
tclCmdAH.o 14228 2.92
tclNamesp.o 13712 2.82
tclUtf.o 13396 2.75
tclDate.o 12752 2.62
tclCmdIL.o 12660 2.60
tclFileName.o 12020 2.47
tclPosixStr.o 10972 2.25
tclInterp.o 10196 2.10
tclEncoding.o 10008 2.06
regexec.o 9296 1.91
tclParse.o 9252 1.90
tclUnixChan.o 9196 1.89
tclUtil.o 8600 1.77
tclIOCmd.o 7828 1.61
tclBinary.o 7804 1.60
tclScan.o 7380 1.52
tclProc.o 7288 1.50
tclUnixFCmd.o 6604 1.36
tclParseExpr.o 6452 1.33
tclUnixInit.o 6040 1.24
tclPipe.o 6040 1.24
tclPkg.o 5544 1.14
tclObj.o 5520 1.13
tclCompExpr.o 5512 1.13
tclFCmd.o 5272 1.08
tclStringObj.o 4728 0.97
tclUnixPipe.o 4196 0.86
tclTimer.o 4088 0.84

tclEvent.o 4036 0.83
Total 486648 100.00

Table 8: Object sizes II
Object file #byte % of Total

tclListObj.o 3760 0.77
tclIOGT.o 3760 0.77
tclRegexp.o 3700 0.76
tclResult.o 3608 0.74
tclLoad.o 3556 0.73
tclUnixFile.o 3324 0.68
tclIOUtil.o 3300 0.68
tclMain.o 3296 0.68
tclHash.o 3296 0.68
tclStubInit.o 2960 0.61
tclLiteral.o 2784 0.57
tclNotify.o 2596 0.53
tclEnv.o 2396 0.49
tclClock.o 2304 0.47
tclLink.o 2240 0.46
tclGet.o 2164 0.44
regerror.o 1972 0.41
tclUnixNotfy.o 1784 0.37
tclIndexObj.o 1668 0.34
tclPreserve.o 1500 0.31
tclResolve.o 1228 0.25
tclThread.o 1216 0.25
tclUnixTime.o 1160 0.24
tclCkalloc.o 1116 0.23
tclLoadDl.o 1044 0.21
tclAsync.o 1028 0.21
tclIOSock.o 992 0.20
tclStubLib.o 980 0.20
tclHistory.o 920 0.19
tclPanic.o 876 0.18
tclAppInit.o 776 0.16
tclUnixSock.o 760 0.16
tclUnixEvent.o 752 0.15
tclAlloc.o 620 0.13
tclMtherr.o 616 0.13
regfree.o 560 0.12
tclUnixThrd.o 532 0.11

Total 486648 100.00

File Touched
tclBinary.c 1027 lines (2/3 of file)

1030 lines 0.03 %
binary 1.06 %

3. Removal of the handling of times and dates (Command
[clock]).

File Touched
tclBasic.c 1 lines
tclInt.h 2 lines
tclClock.c 377 lines (all)
tclDate.c 1873 lines (all)

2253 lines 0.07 %
binary 3.09 %

4. Removal of the package system (Command [package]).

File Touched
tclBasic.c 1 line
tclInt.h 2 lines
tclPkg.c 979 lines

982 lines 0.03 %
binary 1.14 %

5. Removal of new string manipulation functionality (Com-
mand [string]).

File Touched
tclCmdMZ.c 1331 lines5

Lines at most 0.04 %
binary 1.58 %

6. Reverting [lsort]to a quicksort based implementa-
tion, cutting out our own mergesort-based implemen-
tation.

File Touched
tclCmdIL.c 678 lines (lsort)

Lines at most 0.02 %
binary 0.54 %

7. Removal of the bytecode compiler.

File Touched
tclCompCmds.c 2043 lines (all)
tclCompExpr.c 1051 lines (all)
tclCompile.c 3414 lines (all)
Entrypoints ... 300 lines (estim.)

6808 lines 0.21 %
binary 7.76 %

8. Remove of the bytecode executor. This implies the
removal of the bytecode compiler. Without execution
of bytecodes its compilation makes no sense.

File Touched
tclCompCmds.c 2043 lines (all)
tclCompExpr.c 1051 lines (all)
tclCompile.c 3414 lines (all)
tclExecute.c 6412 lines (all)
Entrypoints ... 300 lines (estim.)

13220 lines 0.41 %
binary 13.21 %

9. Removal of regular expressions.

5Just Tcl StringObjCmd

File Touched
regc color.c 17775 lines
regc cvec.c 5094 lines
regc lex.c 24495 lines
regc locale.c 34453 lines
regc nfa.c 36234 lines
regcomp.c 59492 lines
rege dfa.c 17820 lines
regerror.c 3515 lines
regexec.c 28360 lines
regfree.c 2086 lines
regfronts.c 2394 lines
tclRegexp.c 1029 lines

232747 lines 7.24 %
binary 11.5 %

10. Removal of namespaces (Command [namespace]).

File Touched
tclNamepace.c 3916 lines (mostly)6

tclVar.c 4813 lines
tclParse.c 2357 lines
tclParseExpr.c 1870 lines
various (set, proc) 1000 lines

A simple cut-out of this feature is not possible, we
will rather have to rewrite parts of the parser, and
of commands like [set]and [proc]to remove the spe-
cial handling of the colon (:), the namespace separator
character, from the system.

About 13956 LOC have to be touched for this, which is
about 0.43 %. Circa 2.82 % of the binary are definitely
removed.

11. Removal of encodings (Command [encoding]). We
did not count the size of the then irrelevant encoding
files, as we did not count them as part of the whole
code base either.

File Touched
tclEncoding.c 2871 lines

How much is removed from the file above depends on
the chosen model, of which we have two:

(a) Deactivating encodings completely may remove
about 80-90 % of that file. This are circa 1.06 %
of the binary.

Not everything might be removed because we be-
lieve that the best way to remove UTF8 com-
pletely is to rewrite the Utf ¡-¿ External converter
functions and throw away the rest. That way
we don’t have to think about all the other places
which do UTF8.

If we remove this completely we have to touch
many more places throughout the whole code,
most notably the channel system. The latter would
bring the number of LOCs removed or rewritten
up, but also takes much longer. We currently
have no good LOC estimate for this scenario.

As a first approximation we grep’ped the sources
for “Tcl Utf”, which gives us 314 locations in 40
files. We guesstimate that each location trans-
lates into 1-4 lines of code touched directly. And

6There are some routines which deal which the call stack,
these have to stay.

depending on context maybe 5-20 others around
each location which have to change too. That
would be between 314 and 6280 LOC changed,
i.e. replaced with different, non-UTF, code.

The number of 5-20 other lines depending on con-
text might be an underestimation for the channel
system. This part of the core will very likely need
a complete reorganization to allow usage both
with and without encodings. This would be 8389
lines changed in tclIO.c. Changed, not cut!

But also note the fact that tclIO.cis with 5.20 %
of the binary also the third-largest file right now.

Summary: About 17540 LOC have to be touched
for this, which is about 0.54 % of the whole sources.

(b) whereas just deactivating the loading of external
encodings may remove 60-70 % of that file.

12. The generic part of the I/O system.

While this subsystem is with 8.46 % of the binary code
the third-largest part of the core after regular expres-
sions and the engine for the execution of bytecodes,
it also a tangled web and in our opinion at least very
difficult to unravel.

Especially as it is heavily influenced by the choice of
whether to use encodings or not, and also if it has to
support the notifier or not, i.e. file events.

No estimates were made for this part of the core.

It was noted before that Source Navigator crashed when
processing the Tcl sources. This not the case for the newest
version, 5.1. This means that our ability to determine which
parts of the code have to be made conditional, or are de-
pendent on more than one feature is greatly enhanced. Of
course, we will have to write special scripts which mine the
dependency database for the information we need. This
however is less difficult than searching through the sources
by ourselves, and less error-prone.

Such help is especially important for a future up-port of
the modularization changes to 8.4. The internal organiza-
tion of the code has changed so much that the patches we
could generate from the comparison of an unmodified versus
an modularized 8.3.4 core are essentially useless. The only
parts which can be lifted over relatively easily will be the
changes to reduce the consumption of stack space.

APPENDIX

A. REFERENCES

[1] Karl Lehenbauer
A Tcl-Powered Handheld Computer For
Telecommunications Test Automation.
OSCON 2001, San Diego, July 2001

[2] David E. Smyth
Tcl And Concurrent Object-Oriented
Flight Software: Tcl on Mars.
2nd Tcl/Tk Workshop, New Orleans, 1994.

[3] John Hall
Rivendell, aka PalmTcl
http://sourceforge.net/projects/palmtcl

A more current version is available at
http://rivendell.sourcefubar.net

[4] Ashok Nadkarni
Palm Tcl (note the space)
http://palm-tcl.sourceforge.net/

[5] Alexandre Ferrieux
Call For Ideas: How to modularize ?
http://groups.google.ca/groups?

th=ca2f3925760d67a

news:comp.lang.tcl, 1998

	Overview
	Features of the core
	Comparison of core sizes
	Reduction of Stack Usage
	Stack Reduction Results
	Conclusions
	Future Work
	References

