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Abstract 

 
The Athena Regional Stability Simulation was designed as a monolithic TCL/TK application 
supporting one simulation scenario at a time.  The simulation and data management code—the 
core of the application—consisted of over fifty-thousand lines of code divided across many 
modules, many of which were singletons providing resources to the entire application.  This code 
has since been extracted into a scenario class supporting any number of simulation instances 
within a single application.  The resulting implementation uses a novel Snit-based approach to 
creating facades for complex object-oriented libraries.  

1. Overview 

The Athena Regional Stability Simulation is a large time-step simulation of stability operations 
in a war-torn region.  The set of input data that describes the region and the actors within it is 
referred to as a scenario.  For its first seven major releases, Athena was a monolithic TCL/TK 
desktop application supporting one scenario at a time.  To address multiple scenarios 
simultaneously one had to invoke multiple instances of the application; and it was impossible to 
access Athena’s models from within any other application. 

In the fall of 2014 the Athena team received the requirement to support deployment of Athena as 
a cloud-based application with a web interface.  JPL’s role was to develop an Athena back end 
that could sit on a cloud node and interact with the wider web through a wrapper developed by 
another team. 

In addition, the Athena team was tasked with improving Athena’s presentation of its outputs, and 
in particular to make it much easier to compare the results of multiple simulation runs. 

It quickly became clear that Athena’s models needed to be accessible in multiple applications, 
and that any given application might need to load multiple scenarios simultaneously.  After some 
discussion we determined that Athena’s scenario management and simulation modeling code 
needed to be abstracted from the desktop GUI application into a library in the form of a class or 
Snit type [1] supporting multiple instances. 
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2. Initial Architecture 

When work began, Athena had the architecture shown in Figure 1: 

Figure 1: Layered Architecture 

The application proper sat on a stack of libraries, many of which were written by the Athena 
team.  The application itself was divided into two layers: the non-GUI layer, containing the 
scenario management and simulation management code, and the GUI layer on top of it. 

It has always been our practice to push application code down the stack into libraries whenever 
possible.  What has remained in the non-GUI layer, consequently, were those modules that were 
so interconnected that abstracting any piece as a separate library was likely to add complexity 
rather than reduce it.   

The architecture of the non-GUI layer is shown in Figure 2.  The non-GUI layer consisted 
primarily of a collection of singleton objects with well-known global names.  In some cases a 
singleton was a Snit type singleton; in other cases it was an instance of a Snit type or TclOO 
class.  The web of dependencies between these objects was (and is) complicated; giving them 
global names meant that every object could in principle call any of the other objects.  In some 
cases a singleton might own and manage a collection of components in the usual object-oriented 
way; in such cases, the dependent objects were accessed via the owning singleton. 

For example, the ::actor singleton provided a palette of subcommands for managing the 
“actor” entities in the scenario.  Any module in the application might need to call its 
subcommands to acquire information about one or more actors. 
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Figure 2: Singleton Objects 

     
    # Iterate over the actors 
    foreach a [actor names] { 
        array set data [actor get $a] 
        actor update $a . . . 
    } 
 

Our task, then, was to abstract out the bulk of the non-GUI layer into a new library, structured as 
a class with multiple instances. 

3. Architectural Requirements 

We placed the following constraints on the new architecture; two of them have already been 
mentioned: 

• The new library shall provide an Athena scenario class. 

• The class shall support multiple simultaneous instances. 

• Code written using the new scenario class shall be as concise and readable as the existing 
code, in so far as this is possible. 

• The public API shall not directly expose private functionality. 
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4. Object-Oriented Design 

A naive design for an object-oriented library is shown in Figure 3: 

 

Figure 3: Naive Object-Oriented Design 

The library provides a public class, shown at the top.  That class defines a number of 
components; and each of those components may have components of its own.  Coupling is 
minimized and cohesion is maximized if method calls flow along the ownership relationships.   

We initially attempted to implement the Athena application in this style, and were quickly 
frustrated.  A simulation like Athena is modeling the real world (albeit in a highly abstract way), 
and entities in the real world rarely fit into neat stovepipes.  Similarly, the modeled entities link 
to each other in manifold and surprising ways (Figure 4): 

  

Figure 4: Naive Object-Oriented Design with Dependencies 

For example, object A has to know how to find object B, which has to know how to find object 
C; object D has to access object B through A, and object F has to access object E through C and 
B.   Worse, these links change and evolve as the models change and evolve, and early in the 
development process the models were evolving rapidly.  We were under considerable time 
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pressure, and managing the plumbing along the above lines proved to be a full-time job.  We 
quickly abandoned this naïve architecture for the simplest thing that could possibly work, which 
turned out to be the singleton-based architecture shown in Figure 2.  That architecture served us 
well for six years. 

Given time to think and greater experience with the problem, we realized that the difficulty with 
the naïve infrastructure shown in Figures 3 and 4 is that the major modules of the simulation are 
truly all peers and all need ready access to each other.  Instead of manually plumbing each 
interconnection we needed a kind of bus architecture.  The singleton-based architecture provided 
that kind of access: the entities on the bus were the singletons, and the messages were simple 
ensemble calls.   

Such a bus architecture can be implemented in an object-oriented way as shown in Figure 5. 

 

Figure 5: Peer Architecture 

The scenario object is the master object, and the primary interface to the simulation and scenario 
management code. The major modules all become direct components of the scenario object: that 
is, each singleton becomes an instance of a type or class, and that instance is created and owned 
by the scenario object.  Those modules that own managed subcomponents go on owning and 
managing those subcomponents, just as before.  Then, interaction between the peers is handled 
as shown in Figure 6. 
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Figure 6: Peer Interaction 

The scenario object itself serves as the bus.  It passes itself to each component’s constructor as it 
creates the component; thus, every component has access to the scenario, and the scenario has 
access to each component.  The peers interact with each other via the scenario object and the 
scenario object provides a façade over the rest of the library. 

5. Implementation of Peer Components 

The next problem was implementing this bus architecture.  The existing code was concise, 
readable, and maintainable; we wanted the new implementation to lend itself to code that was no 
less concise, readable, and maintainable (insofar as that is possible with a more complex 
architecture).  Also, we sought a solution that allowed us to transition the code base 
incrementally, and with minimal changes to the existing code—especially as regards the 
automated test suite. 

5.1 A Naïve Implementation 

There are many ways to implement a bus architecture, including an explicit message passing 
infrastructure; within a single library such as this, the simplest mechanism is simply the direct 
method call.  The complexity lies not in the message but in identifying and accessing the object 
on which the method will be called. 

In a language like C++ or Java one might simply make the peer components public members of 
the scenario object, and access a component’s methods using dot-notation.  In Java, one might 
iterate over the names of the actors in the scenario like this: 

    for (String name : scenario.actor.names()) { . . . } 
 
More likely, one would provide a scenario method to retrieve the actor component: 
 
    for (String name : scenario.actor().names()) { . . . } 
 
A naïve implementation of the Java/C++ pattern in Tcl leads to code like this, 
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    set actors [scenario actor] 
 
    foreach a [$actors names] { . . . } 
 
or more concisely, 
 
    foreach a [[scenario actor] names] { . . . } 
 
This is ugly on the face of it, and the problem only gets worse with each level of indirection.  
Unfortunately, Tcl lacks any concise, readable way of chaining object references in situations 
like this…or does it? 

5.2 A Tclish Implementation: Snit’s Public Components 

In fact, this pattern arises quite frequently in the Tk widget set.  The text widget manages a 
plethora of objects, including text snippets, marks, and tags.  The widget provides access to these 
managed objects by means of a hierarchical command set.  Tags, for example, are accessed using 
subcommands of the widget’s tag subcommand.  In calling $w tag add we have implicitly 
accessed the text widget’s tag manager component. 

It so happens that this pattern is supported quite readily by an obscure feature of Snit’s 
delegation capability: the public component. 

An instance of a Snit type can define any number of components using the component type 
definition statement, and can delegate its own subcommands to these components. Further, a 
component can be declared to be “public”: 

    component actor –public actor 
 
This statement says that the scenario object has a component called “actor”, and that the actor 
component is to be made public as a subcommand also called “actor”.  Assuming that the 
variable scn contains the name of the scenario object, then, we can write code like this: 
 
    # Iterate over the actors 
    foreach a [$scn actor names] { 
        array set data [$scn actor get $a] 
        $scn actor update $a . . . 
    } 
 
Note that this is almost exactly the same code we started with, except that we’ve inserted the 
::scn command at the beginning of each erstwhile ::actor command. 
 



Re-architecting a Large Monolithic TCL Application 22nd TCL/TK Conference 

This gives us our implementation. Each peer component becomes a public component of the 
scenario object.  Since each peer component knows the name of its owning scenario object, each 
component has seemingly direct access to every other peer component. 
 
This technique extends to any number of levels; if the actor component defines a public 
component, it can be accessed as a subcommand of the actor subcommand of the ::scn 
object. 

5.3 A Peer Component 

Peer components can be implemented as instances of Snit types or TclOO classes, or as any kind 
of ad hoc ensemble that receives and uses the scenario object.  Here is a typical skeleton: 
 

snit::type ::athena::actor { 
    component scn  ;# The scenario object 
     
    constructor {scn_} { 
        set scn $scn_ 
        . . . 
    } 
    . . . 
    method names {} { 
        # return the list of actor names 
    } 
    . . . 
}  

 
The peer’s code can use the $scn component to access any other peer, as well as any services 
provided by the scenario object itself.  Further, if the peer component has subcomponents it can 
pass $scn down to its subcomponents and thereby give them access to all of the peer 
components. 

5.4 The Scenario Object 

The scenario type is implemented as a Snit type.  In addition to managing all of the peer 
components, it also contains the code for saving and loading scenario data and for controlling the 
execution of the simulation.  Here is the basic skeleton that shows how the components are 
managed: 
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snit::type ::athena::athenadb { 
    # Components 
    component actor -public actor 
    component group -public group 
    . . . 
 
    constructor {. . .} { 
        . . . 
        $self MakeComponent actor 
        $self MakeComponent group 
        . . . 
    } 
 
    method MakeComponent {comp} { 
        install $comp using ::athena::${comp} ${selfns}::$comp $self 
    } 
    . . . 
}  

 
In particular, 
 

• The components are defined as types or classes in the ::athena library. 
• The types or classes have the same name as the component. 
• The component objects are created in the scenario object’s private namespace, 

$selfns; as a result they will be destroyed automatically when the scenario object is 
destroyed, with no need for explicit destructor code. 

• The component objects are passed the name of the scenario object itself. 
 
There are special cases, but the majority of the components are created exactly as shown.  And 
all such components can access each other as subcommands of the scenario object. 
 

5.5 The Public Interface 

The scenario object described in Section 5.4, ::athena::athenadb, is the private scenario 
interface, the interface used by the various components of the scenario to interact with each other 
as the user edits the scenario and as the simulation runs.  By the nature of things, this interface 
exposes many methods that clients of the ::athena library cannot call directly without the 
danger of violating public invariants.  Consequently, we also needed to define a public interface 
for use by clients of the library. 

One possibility was to expose the scenario type described above, but to only document those 
components and subcommands that are suitable for public use.  We rejected this, as it makes it 
too easy for the client to get into trouble.  It’s fine for Tcl libraries to give the client enough rope 
to hang himself, but the rope should be stored in a conveniently available closet rather than 
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dangling from a tree limb.  Consequently, we layered the public scenario type, 
::athena::athena, as a wrapper around ::athena::athenadb, the private scenario 
type, as shown in Figure 7: 

 

Figure 7: Public vs. Private Façade 

The public façade is no more than a shell.  It has one true component, an instance of the private 
scenario type, and delegates all of the public options and methods to that component.  In this way 
we were able to build up an object providing only the desired public interface with minimal 
code.  The skeleton looks like this: 

snit::type ::athena::athena { 
    . . . 
    component scn    ;# The instance of ::athena::athenadb 
 
    delegate options -subject to scn 

         . . . 
 
    constructor {. . .} { 
        install scn using athenadb ${selfns}::scn . . . 
    } 
 
    delegate method {actor get}   to scn as {actor get} 
    delegate method {actor names} to scn as {actor names} 
    . . . 
} 
 

Instead of making the components public, we explicitly delegate the required subcommands one 
by one. 
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5.6 Managing the Transition 

The Athena application’s non-GUI layer consisted of over 50,000 lines of code spread over more 
than one-hundred modules; converting it all to the new architecture required weeks of effort.  
Fortunately, we were able to do the conversion incrementally. 

First, we wrote a skeleton scenario type that instead of creating its own components simply 
declared the application’s existing singleton objects as its public components, e.g., 

snit::type ::athena::athenadb { 
    component actor -public actor 
    component group -public group 
    . . . 
 
    constructor {. . .} { 
        . . . 
        set actor ::actor 
        set group ::group 
        . . . 
    } 
} 

 
This allowed an instance of the type to be the interface to the existing application’s code while 
leaving the old interface in place. We were still limited to working with a single scenario at a 
time, but it allowed us to begin to update the code base to use the new interface. This skeleton 
scenario type became the first module in the new ::athena library. 
 
Next, we revised the Athena application to create an instance of the new scenario type, and then 
revised the Athena application’s GUI layer to refer to the scenario data only via this instance.   

Next, we began moving modules from the Athena application’s non-GUI layer to the new 
::athena library and converting them to be true component objects of the scenario type, 
updating references as we went. 

In this way we moved from the old architecture to the new architecture over a period of months, 
while retaining the ability to run and test the application throughout the process.  As the project 
includes over 60,000 lines of tcltest(n) test scripts, this ability was crucial to ensuring that we 
remained on the right track. 

The above description covers a multitude of sins; for example, there were a number of library 
modules that expected to be global resources that also needed to be converted to a proper object-
oriented architecture, and these conversions formed at least half of the total work.  Once the new 
architecture was defined, however, the conversion proceeded smoothly along the lines described 
here.  
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6. Results 

6.1 Interface 

The public scenario type, which is defined as a Snit type called ::athena::athena, has over 
sixty subcommands, many of which have six to ten subcommands of their own.  The private 
scenario type, which is defined as a Snit type called ::athena::athenadb, adds a few more 
subcommands and adds additional subcommands to many of them.  These are certainly the most 
complex Snit types (in terms of the interface) that the author has yet seen. 

We’ve been working with the new code for about six months, and are pleased with the results.  
The simulation modules are no harder to maintain or test than they were previously, and 
encapsulating an entire scenario as a single object has been tremendously freeing. 

6.2 Performance 

We were concerned that the additional layer of subcommands would cause a significant 
performance hit, but this turned out not to be the case.  The new code is neither obviously slower 
nor obviously faster than the old code. 

6.3 Snit vs. TclOO 

Athena currently uses a mixture of Snit and TclOO code.  We have found that TclOO is the 
better fit for small, numerous, lightweight objects, especially when inheritance is required.  
Nevertheless, Snit continues to hold its own in a number of areas.  It remains the megawidget 
framework of choice, and it is much more convenient when defining complex interfaces such as 
those described in this paper due to its support for hierarchical command sets and its 
sophisticated delegation support.  (TclOO provides the “forward” statement, but it’s more of a 
do-it-yourself kit than a full solution.)  Finally, the tight coupling between Snit types and their 
instances makes it easy to handle related collections of objects in an easy and efficient way. 

TclOO can certainly be made to perform all of these functions; but Snit holds the edge in terms 
of brevity and readability. 
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